
Projector Monte Carlo 
• Originally suggested by Fermi and implemented in 1950 by 
Donsker and Kac for H atom. 

• Practical methods and application developed by Kalos: 



Projector Monte Carlo 
(variants: Green’s function MC, Diffusion MC, Reptation MC) 

•  Project single state using the Hamiltonian 
 
•  We show that this is a diffusion + branching operator.  

Maybe we can interpret as a probability. But is this a 
probability? 

•  Yes! for bosons since ground state can be made real 
and non-negative.  

•  But all excited states must have sign changes. This is 
the “sign problem.” 

•  For efficiency we do “importance sampling.” 
•  Avoid sign problem with the fixed-node method. 
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Diffusion Monte Carlo 

•  How do we analyze 
this operator?  

•  Expand into exact 
eigenstates of H. 

•  Then the evolution is 
simple in this basis. 

•  Long time limit is 
lowest energy state 
that overlaps with the 
initial state, usually 
the ground state. 

•  How to carry out on 
the computer? 
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The Green’s function 
•  Operator notation 

•  We define the coordinate green’s function (or density 
matrix by: 

Roughly the probability density of going from R0 to R in 
“time” t.  (but is it a probability?) 

•  Properties: 
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Monte Carlo process 
•  Now consider the variable “t” as a 

continuous time (it is really 
imaginary time). 

•  Take derivative with respect to time 
to get evolution. 

•  This is a diffusion + branching 
process. 

•  Justify in terms of Trotter’s 
theorem. 

Requires interpretation of the 
wavefunction as a probability 
density. 

 
But is it?  Only in the boson ground 

state. Otherwise there are nodes. 
Come back to later. 
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Trotter’s formula 
•  How do we find the solution of: 

•  The operator solution is: 

•  Trotter’s formula (1959): 

•  Assumes that A,B and A+B are reasonable operators. 

•  This means we just have to figure out what each operator 
does independently and then alternate their effect.  This is 
rigorous in the limit as nè∞. 

•  In the DMC case A is diffusion operator, B is a branching 
operator. 

•  Just like “molecular dynamics” At small time we evaluate each 
operator separately. 
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Putting this together 

 
•  n is number of time slices. 
•  τ  is the “time-step” 

•  V is “diagonal” 

•  Error at finite n comes from commutator is roughly: 

•  Diffusion preserves normalization but potential does not! 
  

ρ̂ = e−β (T
+V )

ρ̂ = limn→∞ e−τ T

e−τV

⎡
⎣

⎤
⎦
n

τ = β / n

r e−τ T r ' = 2πτ( )−3/2 e− r−r '( )2 /2τ

r e−τV r ' = δ (r − r ')e−τV (r )

2
ˆ ˆ,

2
T V

e
τ ⎡ ⎤− ⎣ ⎦

R0e
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DMC for Harmonic Oscillator 



Basic DMC algorithm 
•  Construct an ensemble (population P(0)) sampled from 

the trial wavefunction. {R1,R2,…,RP} 
•  Go through ensemble and diffuse each one (timestep τ) 

•  number of copies= 
•  Trial energy ET adjusted to keep population fixed. 

 

•  Problems: 
–  Branching is uncontrolled 
–  Population unstable 
–  What do we do about fermi statistics? 
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Population Bias 
•  Having the right trial energy guarantees that population 

will on the average be stable, but fluctuations will 
always cause the population to either grow too large or 
too small.  

•  Various ways to control the population 
•  Suppose P0 is the desired population and P(t) is the 

current population.  How much do we have to adjust ET 
to make P(t+T)=P0? 

 
•  Feedback procedure: 
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•  There will be a (small) bias in the energy caused by a 
limited population. 



Importance Sampling 
Kalos 1970, Ceperley 1979 

•  Why should we sample the wavefunction? The physically 
correct pdf is |Φ|2. 

•  Importance sample (multiply) by trial wave function. 

 
Evolution = diffusion    + drift         +         branching 
•  Use accept/reject step for more accurate evolution. 
     make acceptance ratio>99% . Determines time step. 
•  We have three terms in the evolution equation. 

Trotter’s theorem still applies. 

f (R,t) ≡ψ T (R)φ(R,t)      limt→∞ f (R,t) ≡ψ T (R)φ0 (R)

− ∂f (R,t)
∂t

=ψ T (R)H f (R,t) /ψ T (R)⎡⎣ ⎤⎦

− ∂f (R,t)
∂t

= − 1
2
∇2 f −∇ f∇ lnψ T (R)( )+ ψ T

−1Hψ T( ) f (R,t)

Commute Ψ through H 



Green’s function for a gradient 
What is Green’s function for the operator? 
 
 
 
 
 
 
 
This operator just causes probability distribution to drift in 

the direction of F. 
Smoluchowski equation for Brownian motion it was the 

effect of gravitational field on the motion of colloids. 
In practice, we limit the gradient so the walk is not pushed 

too far. 


F

∇

variables separate to 1D problems
Evolution equation for Green's function:
∂G(x,t)

∂t
= −F ∂G(x,t)

∂x
  solution  G(x,t) = h(x − Ft)



•  To the pure diffusion algorithm we have added a drift step 
that pushes the random walk in directions of increasing trial 
function: 

•  Branching is now controlled by the local energy 

•  Because of zero variance principle, fluctuations are controlled. 
•  Cusp condition can limit infinities coming from singular 

potentials. 
•  We still determine ET by keeping asymptotic population stable. 

•  Must have accurate “time” evolution.  Adding accept/reject 
step is a major improvement. 
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•  Importanced sampled Green’s function: 

•  Exact property of DMC Green’s function 

•  We enforce detailed balance to decrease time step 
errors. 

•  VMC satisfies detailed balance. 
•  Typically we choose time step to have 99% acceptance 

ratio. 
•  Method gives exact result if either time step is zero or 

trial function is exact. 
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Schematic of DMC 
Ensemble evolves 

according to 
 
•  Diffusion 
•  Drift 
•  branching 

  ensemble 





Mixed estimators 
•  Problem is that PMC 

samples the wrong 
distribution. 

•  OK for the energy 
•  Linear extrapolation 

helps correct this 
systematic error 

•  Other solutions: 
–  Maximum overlap 
–  Forward walking 
–  Reptation QMC 
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Forward Walking 
Kalos et al. 1974. 

•  Let’s calculate the average population resulting from DMC 
starting from a single point R0 after a time `t’. 

•  We can estimate the correction to the mixed estimator by 
weighting with the number of descendants of a given 
configuration. 

•  Problem: the fluctuations in the weights eventually diverge. 
Don’t make ‘t’ too large. 
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Fusion sticking coefficient 
Phys. Rev. A 31, 1999 (1985). 

 •  Consider the  3 body system (µ d t) 
•  For the sticking coefficient, we need the exact 

wavefunction at the point where 2 nuclei are at the 
same position. (this is a singular point) 

( )1 2 3,r r rψ =



Fermions? 
•  How can we do fermion simulations?  The initial condition can 

be made real but not positive (for more than 1 electron in the 
same spin state) 

•  In transient estimate or released-node methods one carries 
along the sign as a weight and samples the modulus. 

•  Do not forbid crossing of the nodes, but carry along sign when 
walks cross. 

•  What’s wrong with node release: 
–  Because walks don’t die at the nodes, the computational 

effort increases (bosonic noise) 
–  The signal is in the cancellation which dominates 

Monte Carlo can add but not subtract 
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Transient Estimate Approach 

•  Ψ(β)  converges to the exact ground state 
•  E is an upper bound converging to the exact answer 

monotonically 
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Model fermion problem: Particle in a box 
Symmetric potential: V(r) =V(-r)   
Antisymmetric state:  f(r)=-f(-r) 

Initial (trial) state Final (exact) state 

Sign of walkers fixed by initial position. They are allowed to diffuse freely. 
f(r)= number of positive-negative walkers. Node is dynamically established by 
diffusion process. (cancellation of positive and negative walkers.) 

Positive walkers 

Negative walkers 

Node 
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Scaling in Released-Node 

•  At any point, positive and negative walkers will tend to cancel 
so the signal is drown out by the fluctuations. 

•  Signal/noise ratio is :    t=projection time 
 EF and EB are Fermion, Bose energy (proportional to N) 

•  Converges but at a slower rate. Higher accuracy, larger t. 
•  For general excited states: 

 Exponential complexity! 
•  Not a fermion problem but an excited state problem. 
•  Cancellation is difficult in high dimensions.  

Initial distribution Later distribution 
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Exact fermion calculations 
•  Possible for the electron 

gas for up to 60 
electrons. 

•  2DEG at  rs=1  N=26 

•  Transient estimate 
calculation with SJ and 
BF-3B trial functions. 
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General statement of the  
“fermion problem” 

•  Given a system with N fermions and a known 
Hamiltonian and a property O. (usually the energy). 

•  How much time T will it take to estimate O to an 
accuracy ε? How does T scale with N and ε? 

•  If you can map the quantum system onto an equivalent 
problem in classical statistical mechanics then: 

2NT −∝ εα With 0 <α < 4  
This would be a “solved” quantum problem! 
• All approximations must be controlled!  
• Algebraic scaling in N! 
e.g.  properties of Boltzmann or Bose systems in equilibrium. 



“Solved Problems” 

•  1-D problem. (simply forbid exchanges) 
•  Bosons and Boltzmanons at any temperature 
•  Some lattice models: Heisenberg model, 1/2 filled Hubbard 

model on bipartite lattice (Hirsch) 
•  Spin symmetric systems with purely attractive interactions: 

u<0 Hubbard model, nuclear Gaussian model. 
•  Harmonic oscillators or systems with many symmetries. 
•  Any problem with <i|H|j> ≤ 0  
•  Fermions in special boxes 
•  Other lattice models 
 



The sign problem 

•  The fermion problem is intellectually and technologically 
very important. 

•  Progress is possible but danger-the problem maybe 
more subtle than you first might think. New ideas are 
needed. 

•   No fermion methods are perfect but QMC is competitive 
with other methods and more general. 

•  The fermion problem is one of a group of related 
problems  in quantum mechanics (e.g dynamics).   

•  Feynman argues that general many-body quantum 
simulation is exponentially slow on a classical computer.  

•  Maybe we have to “solve” quantum problems using 
“analog” quantum computers: programmable quantum 
computers that can emulate any quantum system.  



Fixed-node method 
•  Initial distribution is a pdf.   

 It comes from a VMC simulation. 
•  Drift term pushes walks away 

from the nodes. 
•  Impose the condition: 
•  This is the fixed-node BC 

•  Will give an upper bound to the 
exact energy, the best upper 
bound consistent with the FNBC. 
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• f(R,t) has a discontinuous gradient at the nodal location. 
• Accurate method because Bose correlations are done exactly.  
• Scales well, like the VMC method, as N3. Classical complexity. 
• Can be generalized from the continuum to lattice finite 
temperature, magnetic fields, … 
• One needs trial functions with accurate nodes. 



Proof of fixed-node theorem 
Suppose we solve S.E. in a subvolume V determined by 
the nodes of an antisymetric trial function.   

ĤφFN = EFNφFN    inside V

Extend the solution to all space with the permutation operator.

φ̂FN (R) ≡ 1
N !
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Inside a given sub-volume only permutations of a given sign (±) contribute.
Hence the extend solution is non-zero.
Evaluate the variational energy of the extended trial function.
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Surfaces do not contribute to the integral since the solution vanishes there.



Nodal Properties 
If we know the sign of the exact wavefunction (the nodes), we 

can solve the fermion problem with the fixed-node method. 
•  If f(R) is real, nodes are f(R)=0 where R is the 3N dimensional 

vector.  
•  Nodes are a 3N-1 dimensional surface. (Do not confuse with  

single particle orbital nodes!) 
•  Coincidence points ri  = rj are  3N-3 dimensional hyper-planes 
•  In 1 spatial dimension these “points” exhaust the nodes: 

fermion problem is easy to solve in 1D   with the “no crossing 
rule.” 

•  Coincidence points (and other symmetries) only constrain 
nodes in higher dimensions, they do not determine them. 

•  The nodal surfaces define nodal volumes. How many nodal 
volumes are there? Conjecture: there are typically only 2 
different volumes (+ and -) except in 1D. (but only 
demonstrated for free particles.) 



Nodal Picture:  
2d slice thru 322d space 

•  Free electron 
•  Other electrons 

•  Nodes pass thru 
their positions  

•  Divides space 
into 2 regions 

•  Wavelength 
given by 
interparticle 
spacing 



Fixed-Phase method 
Ortiz, Martin, DMC 1993 

•  Generalize the FN method to complex trial functions: 
•  Since the Hamiltonian is Hermitian, the variational energy is 

real: 

•  We see only one place where the energy depends on the 
phase of the wavefunction. 

•  We fix the phase, then we add this term to the potential 
energy. In a magnetic field we get also the vector potential.  

•  We can now do VMC or DMC and get upper bounds as before. 
•  The imaginary part of the local energy will not be zero unless 

the right phase is used. 
•  Used for twisted boundary conditions, magnetic fields, 

vortices, phonons, spin states, …  
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Wavefunctions beyond Jastrow 
•  Use method of residuals construct 

a sequence of increasingly better 
trial wave functions.  Justify from 
the Importance sampled DMC. 

•  Zeroth order is Hartree-Fock 
wavefunction 

•  First order is Slater-Jastrow pair 
wavefunction (RPA for electrons 
gives an analytic formula) 

•  Second order is 3-body backflow 
wavefunction 

•  Three-body  form is like a squared 
force. It is a bosonic term that does 
not change the nodes. 
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Backflow wave function 

•  Backflow means change the 
coordinates to quasi- coordinates.  

•  Leads to a much improved energy 
and to improvement in nodal 
surfaces. Couples nodal surfaces 
together. 

       Kwon PRB 58, 6800 (1998). 
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Dependence of energy on wavefunction 

 3d Electron fluid at a density rs=10 

    Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998 

•  Wavefunctions 
–  Slater-Jastrow (SJ) 
–  three-body (3) 
–  backflow (BF) 
–  fixed-node (FN) 

•  Energy <f |H| f> converges to ground 
state 

•  Variance <f [H-E]2 f> to zero. 
•  Using 3B-BF gains a factor of 4. 
•  Using DMC gains a factor of 4. 
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Summary of  T=0 methods: 
 

Variational(VMC), Fixed-node(FN), Released-node(RN) 
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Problems with projector methods 
•  Fixed-node is a super-variational method. Find best energy 

within a given nodal surface. 
•  In principle we can vary nodal surfaces. 
•  DMC dynamics is determined by Hamiltonian 
•  Zero-variance principle allows very accurate calculation of 

ground state energy if trial function is good. 
•  Projector methods need a trial wavefunction for accuracy. 

They are essentially methods that perturb from the trial 
function to the exact function. (Note: if you don’t use a trial 
function, you are perturbing from the ideal gas) 

•  Difficulty calculating properties other than energy. We must 
use “extrapolated estimators” or “forward walking”. 
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